Loading [MathJax]/jax/output/HTML-CSS/jax.js

Wednesday, March 27, 2013

Permutation and Group

If you are in Hong Kong and you need help for university mathematics courses, please visit  www.all-r-math.com.

A permutation of a permutation, is the product of the two permutations?
Right. The multiplication is not commutative, i.e in general abba. For example (123132)(123231)=(123321) but (123231)(123132)=(123213).
What happens if I keep permuting using the same permutation?
If you keep permuting with same permutation, you will eventually return to the initial configuration. For example (123231)(123231)(123231)=(123231)(123312)=(123123). The identity permutation, usually denoted by (1), is the permutation that changes nothing. We know that, say, there are n objects, then applying the same permutation for n! times will always end up to be the identity permuation, i.e. τn!=(1)
Can I say τn!-1=1/τ?
Not quite. But you can write τn!-1-1, meaning that it is the multiplicative inverse of τ in the permutation multiplication.

Muliplication with an identity element and inverses. It is a group!?
Right. It is a group.
For every element α of a group G, we define a function Aα(g)=αg. It is not hard to see that Aα is a bijection and so it is a permutation. Indeed we have AαAβ=Aαβ. Hence if we identify α with Aα, we see that each element of a group is indeed a permutation of the group!

No comments:

Post a Comment