In daily language and mathematical articles, we frequently use the four basic logical operations: "not", "and", "or", "if-then". However, in electronics, the most fundamental logical operation is "nand" -- the NAND ("not and") operation can be used to implement other logical operations.
The symbol for NAND gate.
- Negation: Not $p$. $$\begin{array}{c|c} p&\neg p\\ T & F\\ F & T \end{array}$$ By comparing its truth table with the truth table of $p|p$, we see that $$\neg p = p|p.$$
- Conjunction: $p$ and $q$. $$\begin{array}{c|c|c} p&q&p\wedge q \\ T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$ The output is true only if both $p$ and $q$ are true. It turns out that $$p \wedge q = (p|q)|(p|q).$$ Note also that $p|q = \neg (p\wedge q)$, i.e. "$p$ NAND $q$" is indeed "Not ($p$ AND $q$)".
- Disjunction: $p$ or $q$. $$\begin{array}{c|c|c} p&q&p\vee q \\ T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$$ The output is false only if both $p$ and $q$ are false. It turns out that $$p \vee q = (p|p)|(q|q).$$
- Conditional: If $p$ then $q$. $$\begin{array}{c|c|c} p&q&p\rightarrow q \\ T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$ The output is false only if $p$ is true but $q$ is false. It turns out that $$p \rightarrow q = p|(q|q).$$
No comments:
Post a Comment